ALGEBRA

- 1. Given that $a = \log_5 35$ and $b = \log_9 35$, show that $\log_5 21 = \frac{1}{2b} (2ab 2b + a)$.
- 2. Find the value of $\log_a \sqrt{bc}$, given that $\log_a bc^3 = 8$ and $\log_a b^3c^2 = 10$.
- 3. Find the common difference, the n^{th} term and the sum to n terms of the A.P given by $In(3 + In(3^2) + In(3^3) + \dots$
- 4. Solve the inequality: |x-2| > 3|2x+1|.
- 5. Solve the inequality: $\frac{x+1}{2x-3} \le \frac{1}{x-3}$.
- 6. Express $1 5x 2x^2$ in the form $a b(x + c)^2$, hence, deduce the maximum value of the expression.
- 7. Find the square root of: $23 4\sqrt{15}$.
- 8. The geometric mean of two numbers a and b for (b > a) is equal to Four Fifth the arithmetic mean of the two numbers. If a = 6, find the value of b.
- 9. If $(x+1)^2$ is a factor of $p(x)=2x^4+7x^3+6x^2+ax+b$. Find the values of a and b, hence solve p(x)=0.
- 10. A polynomial P(x) is a multiple of (x-3) and the remainder when divided by (x+3) is 12. Find the remainder when P(x) is divided by (x^2-9) .
- 11. Find three numbers in an A.P such that their sum is 27 and their product is 504.
- 12. Solve the simultaneous equations: $\frac{1}{u+v} + \frac{2}{u-v} = 8$, $u^2 v^2 = \frac{1}{6}$
- 13. Expand $\frac{1}{\sqrt{1+x}}$ up to the term in x^2 and by letting $x = \frac{1}{4}$, show that $\sqrt{5} \approx \frac{256}{115}$.
- 14. Find the value of n for which the coefficient of x, x^2 and x^3 in the binomial expansion of $(1+x)^n$ are in an Arithmetic progression.

- 15. Find the coefficient of x in the expansion of $\left(x + \frac{2}{x^2}\right)^{10}$.
- 16. Prove by Mathematical induction that: $\sum_{r=2}^{n} \frac{1}{r^2 1} = \frac{3}{4} \frac{2n+1}{2n(n+1)}$
- 17. Given that $z = \cos\theta + i\sin\theta$, show that $\frac{z-1}{z+1} = i\tan\frac{\theta}{2}$.
- 18. Determine n if in the expansion of $(2+3x)^n$ in ascending powers of x, the coefficient of x^{12} is four times that of x^{11} .
- 19. Describe the locus of the complex number z when it moves in the argand diagram such that $\arg\left(\frac{z-3}{z-2i}\right) = \frac{\pi}{4}$.
- 20. The complex number u=2i. The complex number with modulus 1 and argument $\frac{2}{3}\pi$ is denoted w. Find in the form x+iy, the complex numbers w, uw and $\frac{u}{w}$.

ANALYSIS

- 21. Given that $y = \frac{e^x e^{-x}}{e^x + e^{-x}}$, show that $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$.
- 22. Evaluate: $\int_0^2 \sqrt{(4-x^2)} dx$
- 23. Express $\frac{6-9x}{27x^3+8}$ in partial fractions and hence find $\int \frac{6-9x}{27x^3+8} dx$
- 24. Solve the d.e $x \frac{dy}{dx} = 1 y^2$, given that x = 2, y = 0, find y in terms of x.
- 25. Solve the differential equation: $x^2 \frac{dy}{dx} xy = 3y^2$ given y = 1 when x = 1.
- 26. The volume of a water reservoir is generated by rotating the curve $y = kx^2$ about the y-axis. Show that when the central depth of water in the reservoir is h metres, the surface area A is proportional to h and the volume, v is proportional to h^2 .

A LEVEL PURE MATHEMATICS SEMINAR QUESTIONS

2018

If the rate of loss of water from the reservoir due to evaporation is λA m² per day, obtain a differential equation for h after t days. Hence, deduce that the depth of water decreases at a constant rate.

Given that $\lambda = \frac{1}{2}$, determine how long it will take for the depth of water to decrease from 20 m to 2 m.

- 27. Given that $y = In(x + \sqrt{x^2 + a^2})$, where a is a constant, prove that $\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + a^2}}$ and hence evaluate $\int_0^4 \frac{dx}{\sqrt{x^2 + 9}}$.
- 28. Find: $\int \frac{dx}{e^x 1}$
- 29. Find the volume of the solid generated by rotating the area bounded by the curve $y = \cos \frac{1}{2}x$ from x = 0 to $x = \pi$ about the x axis.
- 30. Evaluate: $\int_0^{\pi/3} x \sin 3x \, dx$
- 31. Prove that: $\int_{\pi}^{4\pi/3} \cos ec \frac{1}{2} x \, dx = In3$
- 32. Find the general solution of the d.e: $\frac{dy}{dx} + 2y = e^{-2x} \cos x$
- 33. Solve the differential equation: $x^2 \frac{dy}{dx} xy = 3y^2$ given y = 1 when x = 1.
- 34. Given that $y = \tan xy$, show that $\frac{dy}{dx} = \frac{y}{\cos^2 xy x}$
- 35. Sketch the curve $y = \frac{3x+3}{x(3-x)}$, stating the intercepts and find the turning points.

TRIGONOMETRY

- 36. Given that $x = \sin(\theta + 105^{\circ}) + \sin(\theta 15^{\circ}) + \sin(\theta + 45^{\circ})$ and $y = \cos(\theta + 105^{\circ}) + \cos(\theta 15^{\circ}) + \cos(\theta + 45^{\circ})$, show that $\frac{x}{y} = \tan(\theta + 45^{\circ})$.
- 37. Prove in a triangle ABC given $\frac{a^2 + b^2 + c^2}{8R^2} = 1 + \cos A \cos B \cos C$ where R is the radius of the circumscribing circle.
- 38. Eliminate θ between the equations $x = a\cos^2\theta + b\sin^2\theta$ and $y = (a b)\sin\theta\cos\theta$.
- 39. Solve the equation $3\sec^2 \frac{x}{2} = \tan \frac{x}{2} + 5$ for $0^0 \le x \le 360^0$.
- 40. The roots of the equation $ax^2 + bx + c = 0$ are $\tan \alpha$ and $\tan \beta$. Express $\sec(\alpha + \beta)$ in terms of a, b, c.
- 41. Prove that: $\cos 3x = 4\cos^3 x 3\cos x$, hence, solve the equation $1 + \cos 3x = \cos x(1 + \cos x)$ for $0^\circ \le x \le 360^\circ$.
- 42. If ABC is a triangle, prove that $\sin^2 A + \sin^2 B + \sin^2 C = 2 + 2\cos A\cos B\cos C$
- 43. Prove that $\sin(2\sin^{-1}x + \cos^{-1}x) = \sqrt{(1-x^2)}$.
- 44. Prove that: $\tan^{-1} \frac{1}{2} \cos ec^{-1} \frac{\sqrt{5}}{2} = \cos^{-1} \frac{4}{5}$.
- 45. Solve: $\cos x \sin x + \cos 3x \sin 3x = 0$ for $0^{\circ} \le x \le \pi$.
- 46. Express $10\sin x \cos x + 12\cos 2x$ in the form $R\sin(2x + \alpha)$, hence or otherwise solve $10\sin x \cos x + 12\cos 2x + 7 = 0$ in the range $0^{\circ} \le x \le 360^{\circ}$.
- 47. Prove that: $\frac{\sin 8\theta \cos \theta \sin 6\theta \cos 3\theta}{\cos 2\theta \cos \theta \sin 3\theta \sin 4\theta} = \tan 2\theta.$

GEOMETRY

- 48. Prove that the equation of the tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the point $(a \sec \theta, b \tan \theta)$ is $by + ax \sin \theta = (a^2 + b^2) \tan \theta$. If the normal meets the x axis at A and the y axis at B, find the locus of the mid point of AB.
- 49. Find the equation of the tangent and the normal to the curve $xy = c^2$ at the point $P\left(ct, \frac{c}{t}\right)$. Given that the normal at P meets the curve again at Q, find the coordinates of Q. If the tangent at P meets the y-axis at R, find the equation of the locus of the midpoint M of PR.
- 50. Find the area of a quadrilateral *ABCD*, with coordinates A(5, -2), B(8, 2), C(3, 7) and D(3, 4).
- 51. Find the angle between the lines 3y = 2x + 5 and 5y + 2x = 7.
- 52. Given that $r = 3\cos\theta$ is an equation of a circle, find the cartesian equation.
- 53. The normal to the parabola $y^2 = 4ax$ at the point $P(at^2, 2at)$ meets the axis of the parabola at G and GP is produced, beyond P to Q so that $\overline{GP} = \overline{PQ}$. Show that the equation of locus of Q is $y^2 = 16a(x + 2a)$.
- 54. Find the equation of a circle whose centre lies on the line y = 3x 1 and passes through the points (1, 1) and (2, -1).
- 55. The gradient of the side PQ of the rectangle PQRS is $\frac{3}{4}$. The coordinates of the opposite corners Q, S are respectively (6, 3) and (-5, 1). Find the equation of PR.
- 56. The sides AB and BC of a parallelogram ABCD have equations y + 3x = 1 and y = 5x –7 respectively. If the coordinates of D are (5, 10), find the coordinates of A, B, C.

VECTORS

- 57. With respect to the origin O, the points P, Q, R, S have position vectors given by $\overrightarrow{OP} = \mathbf{i} \mathbf{k}$, $\overrightarrow{OQ} = -2\mathbf{i} + 4\mathbf{j}$, $\overrightarrow{OR} = 4\mathbf{i} + 2\mathbf{j} + \mathbf{k}$, $\overrightarrow{OS} = 3\mathbf{i} + 5\mathbf{j} 6\mathbf{k}$.
- i) Find the equation of the plane containing P,Q and R
- ii) The point N is the foot of the perpendicular from S to this plane. Find the position vector of N and show that the length of SN is 7.
- 58. The straight line l passes through the points with coordinates (-5, 3, 6) and (5, 8, 1). The plane p has equation 2x y + 4z = 9.
- i) Find the coordinates of the point of intersection of l and p.
- ii) Find the acute angle between l and p.
- 59a) Find the acute angle between the line whose vector equation is $\mathbf{r} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k} + \mu(2\mathbf{i} + 2\mathbf{j} \mathbf{k})$ and the plane $\mathbf{r} \cdot (2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}) = 18$.
- b) Find the position vector of the point where the line $\mathbf{r} = -\mathbf{i} 3\mathbf{j} + 4\mathbf{k} + \lambda(2\mathbf{i} + \mathbf{j} 3\mathbf{k})$ cuts the plane $\mathbf{r} \cdot (\mathbf{i} \mathbf{j} + 2\mathbf{k}) = -5$.
- 60. Two lines have vector equations $\mathbf{r} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} 4 \\ 4 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$, find the position vector of the point of intersection of the two lines and the Cartesian equation of the plane containing the two lines.
- 61i) Find the perpendicular distance of the point (3, 0, 1) from the line $\frac{x-1}{3} = \frac{y+2}{4} = \frac{z}{12}$.
- ii) Find the angle between the line $x-1=\frac{y-2}{0}=\frac{z-3}{3}$ and the plane 3x+2y+z=1.
- Determine in dot product form the equation of a plane containing the point (3,1,2) and the line $x-1=\frac{y-2}{0}=\frac{z-3}{3}$.

END